Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Enzyme Inhib Med Chem ; 38(1): 2202357, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2290848

ABSTRACT

In this article, emulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a-3g) in an attempt to improve their biological availability and antiviral activity. Next, both cytotoxicity and anti-SARS-CoV-2 activities of the examined compounds loaded EMLs (F3a-g) were assessed in Vero E6 cells via MTT assay to calculate the CC50 and inhibitory concentration 50 (IC50) values. The most potent 3e-loaded EMLs (F3e) elicited a selectivity index of 18 with an IC50 value of 0.73 µg/mL. Moreover, F3e was selected for further elucidation of a possible mode of action where the results showed that it exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition. Besides, molecular docking and MD simulations towards the SARS-CoV-2 Mpro were performed. Finally, a structure-activity relationship (SAR) study focussed on studying the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide in addition to compound contraction on SARS-CoV-2 activity.HighlightsEmulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a-3g).The most potent 3e-loaded EMLs (F3e) showed an IC50 value of 0.73 µg/mL against SARS-CoV-2.F3e exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition.Molecular docking, molecular dynamics (MD) simulations, and MM-GBSA calculations were performed.Structure-activity relationship (SAR) study was discussed to study the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide on the anti-SARS-CoV-2 activity.


Subject(s)
COVID-19 , Nanoparticles , Humans , Molecular Docking Simulation , SARS-CoV-2 , Antiviral Agents/pharmacology , Molecular Dynamics Simulation , Protease Inhibitors
2.
J Biomol Struct Dyn ; : 1-28, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-2258161

ABSTRACT

The global prevalence of COVID-19 disease and the overwhelming increase in death toll urge scientists to discover new effective drugs. Although the drug discovery process is a challenging and time-consuming, fortunately, the plant kingdom was found to have many active therapeutics possessing broad-spectrum antiviral activity including those candidates active against severe acute respiratory syndrome coronaviruses (SARS-CoV). Herein, nine traditional Chinese medicinal plant constituents from different origins (Glycyrrhizin 1, Lycorine 2, Puerarin 3, Daidzein 4, Daidzin 5, Salvianolic acid B 6, Dihydrotanshinone I 7, Tanshinone I 8, Tanshinone IIa 9) previously reported to exhibit antiviral activity against SARS-CoV were virtually screened in silico (molecular docking) as potential inhibitors of SARS-CoV-2 target proteins. The tested medicinal plant compounds were in silico screened for their activity against two key SARS-CoV-2 target proteins; 3CLpro, and Spike binding-domain proteins. Among the tested medicinal plant compounds, Salvianolic acid B 6 (Sal-B) showed promising binding affinities against the two specified SARS-CoV-2 target proteins compared to the reference standards used. Hence molecular dynamics simulations followed by calculating the free-binding energy were carried out for Sal-B providing information on its affinity, stability, and thermodynamic behavior within the two SARS-CoV-2 target proteins as well as key ligand-protein binding aspects. Besides, the quantum mechanical calculations showed that Sal-B can adopt different conformations due to the existence of various rotatable bonds. Therefore, the enhanced antiviral activity of Sal-B among other studied compounds can be also attributed to the structural flexibility of Sal-B. Our study gives an explanation of the structure activity relationship required for targeting SARS-CoV-2 3CLpro and Spike proteins and also facilitates the future design and synthesis of new potential drugs exhibiting better affinity and specificity. Besides, an ADME study was carried out on screened compounds and reference controls revealing their pharmacokinetics properties.Communicated by Ramaswamy H. Sarma.

3.
Metabolites ; 12(11)2022 Nov 13.
Article in English | MEDLINE | ID: covidwho-2110180

ABSTRACT

The anti-MERS-CoV activities of three medicinal plants (Azadirachta indica, Artemisia judaica, and Sophora tomentosa) were evaluated. The highest viral inhibition percentage (96%) was recorded for S. tomentosa. Moreover, the mode of action for both S. tomentosa and A. judaica showed 99.5% and 92% inhibition, respectively, with virucidal as the main mode of action. Furthermore, the anti-MERS-CoV and anti-SARS-CoV-2 activities of S. tomentosa were measured. Notably, the anti-SARS-CoV-2 activity of S. tomentosa was very high (100%) and anti-MERS-CoV inhibition was slightly lower (96%). Therefore, the phytochemical investigation of the very promising S. tomentosa L. led to the isolation and structural identification of nine compounds (1-9). Then, both the CC50 and IC50 values for the isolated compounds against SARS-CoV-2 were measured. Compound 4 (genistein 4'-methyl ether) achieved superior anti-SARS-CoV-2 activity with an IC50 value of 2.13 µm. Interestingly, the mode of action of S. tomentosa against SARS-CoV-2 showed that both virucidal and adsorption mechanisms were very effective. Additionally, the IC50 values of S. tomentosa against SARS-CoV-2 and MERS-CoV were found to be 1.01 and 3.11 µg/mL, respectively. In addition, all the isolated compounds were subjected to two separate molecular docking studies against the spike (S) and main protease (Mpr°) receptors of SARS-CoV-2.

4.
RSC advances ; 12(41):26895-26907, 2022.
Article in English | EuropePMC | ID: covidwho-2092161

ABSTRACT

An essential target for COVID-19 is the main protease of SARS-CoV-2 (Mpro). With the objective of targeting this receptor, a novel set of pyrido[1,2-a]pyrrolo[2,3-d]pyrimidines with terminal carboxamide fragments was designed, synthesized, and considered as an initial motif for the creation of effective pan-coronavirus inhibitors. Accordingly, nine derivatives (21–29) have been introduced for in vitro assay to evaluate their antiviral activity and cytotoxicity effect against COVID-19 virus using Vero cells. The obtained data revealed that the majority of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with weak or even no detectable cytotoxic effect on Vero cells. Extensive molecular docking simulations highlighted proper non-covalent interaction of new compounds within the binding pocket of Mpro as a potential target for their antiviral activity. In vitro assay for all the synthesized derivatives against the viral Mpro target indicated that compounds 25 and 29 have promising inhibitory activity with IC50 values at low micromolar concentrations. The molecular dynamic simulation results predicted the stability of compound 29 in the binding cavity of SARS-CoV-2 Mpro and hence supported the high inhibitory activity shown by the In vitro assay. These results suggested that compounds 25 and 29 merit further investigations as promising drug candidates for the management of SARS-CoV-2. An essential target for COVID-19 is the main protease of SARS-CoV-2 (Mpro).

5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071505

ABSTRACT

In this article, 34 anticoagulant drugs were screened in silico against the main protease (Mpro) of SARS-CoV-2 using molecular docking tools. Idraparinux, fondaparinux, eptifibatide, heparin, and ticagrelor demonstrated the highest binding affinities towards SARS-CoV-2 Mpro. A molecular dynamics study at 200 ns was also carried out for the most promising anticoagulants to provide insights into the dynamic and thermodynamic properties of promising compounds. Moreover, a quantum mechanical study was also conducted which helped us to attest to some of the molecular docking and dynamics findings. A biological evaluation (in vitro) of the most promising compounds was also performed by carrying out the MTT cytotoxicity assay and the crystal violet assay in order to assess inhibitory concentration 50 (IC50). It is worth noting that ticagrelor displayed the highest intrinsic potential for the inhibition of SARS-CoV-2 with an IC50 value of 5.60 µM and a safety index of 25.33. In addition, fondaparinux sodium and dabigatran showed promising inhibitory activities with IC50 values of 8.60 and 9.40 µM, respectively, and demonstrated safety indexes of 17.60 and 15.10, respectively. Moreover, the inhibitory potential of the SARS-CoV-2 Mpro enzyme was investigated by utilizing the SARS-CoV-2 Mpro assay and using tipranavir as a reference standard. Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained for fondaparinux sodium with an IC50 value of 2.36 µM, surpassing the reference tipranavir (IC50 = 7.38 µM) by more than three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for dabigatran with an IC50 value of 10.59 µM. Finally, an SAR was discussed, counting on the findings of both in vitro and in silico approaches.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Molecular Docking Simulation , Coronavirus 3C Proteases , Molecular Dynamics Simulation , Fondaparinux , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Dabigatran , Ticagrelor , Eptifibatide , Gentian Violet , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Heparin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
6.
RSC Adv ; 12(41): 26895-26907, 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2069898

ABSTRACT

An essential target for COVID-19 is the main protease of SARS-CoV-2 (Mpro). With the objective of targeting this receptor, a novel set of pyrido[1,2-a]pyrrolo[2,3-d]pyrimidines with terminal carboxamide fragments was designed, synthesized, and considered as an initial motif for the creation of effective pan-coronavirus inhibitors. Accordingly, nine derivatives (21-29) have been introduced for in vitro assay to evaluate their antiviral activity and cytotoxicity effect against COVID-19 virus using Vero cells. The obtained data revealed that the majority of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with weak or even no detectable cytotoxic effect on Vero cells. Extensive molecular docking simulations highlighted proper non-covalent interaction of new compounds within the binding pocket of Mpro as a potential target for their antiviral activity. In vitro assay for all the synthesized derivatives against the viral Mpro target indicated that compounds 25 and 29 have promising inhibitory activity with IC50 values at low micromolar concentrations. The molecular dynamic simulation results predicted the stability of compound 29 in the binding cavity of SARS-CoV-2 Mpro and hence supported the high inhibitory activity shown by the In vitro assay. These results suggested that compounds 25 and 29 merit further investigations as promising drug candidates for the management of SARS-CoV-2.

7.
Life Sci ; 309: 121048, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2061633

ABSTRACT

Pirfenidone (PFD) is a non-peptide synthetic chemical that inhibits the production of transforming growth factor-beta 1 (TGF-ß1), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor (PDGF), Interleukin 1 beta (IL-1ß), and collagen 1 (COL1A1), all of which have been linked to the prevention or removal of excessive scar tissue deposition in many organs. PFD has been demonstrated to decrease apoptosis, downregulate angiotensin-converting enzyme (ACE) receptor expression, reduce inflammation through many routes, and alleviate oxidative stress in pneumocytes and other cells while protecting them from COVID-19 invasion and cytokine storm. Based on the mechanism of action of PFD and the known pathophysiology of COVID-19, it was recommended to treat COVID-19 patients. The use of PFD as a treatment for a range of disorders is currently being studied, with an emphasis on outcomes related to reduced inflammation and fibrogenesis. As a result, rather than exploring the molecule's chemical characteristics, this review focuses on innovative PFD efficacy data. Briefly, herein we tried to investigate, discuss, and illustrate the possible mechanisms of actions for PFD to be targeted as a promising anti-inflammatory, anti-fibrotic, anti-oxidant, anti-apoptotic, anti-tumor, and/or anti-SARS-CoV-2 candidate.


Subject(s)
COVID-19 Drug Treatment , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tumor Necrosis Factor-alpha , Interleukin-1beta , SARS-CoV-2 , Fibrosis , Pyridones/pharmacology , Pyridones/therapeutic use , Collagen Type I/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Platelet-Derived Growth Factor , Inflammation/drug therapy , Transforming Growth Factors , Angiotensins
8.
Viruses ; 14(9)2022 08 25.
Article in English | MEDLINE | ID: covidwho-2006218

ABSTRACT

COVID-19 was first diagnosed in Egypt on 14 February 2020. By the end of November 2021, over 333,840 cases and 18,832 deaths had been reported. As part of the national genomic surveillance, 1027 SARS-CoV-2 near whole-genomes were generated and published by the end of July 2021. Here we describe the genomic epidemiology of SARS-CoV-2 in Egypt over this period using a subset of 976 high-quality Egyptian genomes analyzed together with a representative set of global sequences within a phylogenetic framework. A single lineage, C.36, introduced early in the pandemic was responsible for most of the cases in Egypt. Furthermore, to remain dominant in the face of mounting immunity from previous infections and vaccinations, this lineage acquired several mutations known to confer an adaptive advantage. These results highlight the value of continuous genomic surveillance in regions where VOCs are not predominant and the need for enforcement of public health measures to prevent expansion of the existing lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Egypt/epidemiology , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics
9.
J Enzyme Inhib Med Chem ; 37(1): 2112-2132, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1967782

ABSTRACT

The global outbreak of the COVID-19 pandemic provokes scientists to make a prompt development of new effective therapeutic interventions for the battle against SARS-CoV-2. A new series of N-(5-nitrothiazol-2-yl)-carboxamido derivatives were designed and synthesised based on the structural optimisation principle of the SARS-CoV Mpro co-crystallized WR1 inhibitor. Notably, compound 3b achieved the most promising anti-SARS-CoV-2 activity with an IC50 value of 174.7 µg/mL. On the other hand, compounds 3a, 3b, and 3c showed very promising SARS-CoV-2 Mpro inhibitory effects with IC50 values of 4.67, 5.12, and 11.90 µg/mL, respectively. Compound 3b docking score was very promising (-6.94 kcal/mol) and its binding mode was nearly similar to that of WR1. Besides, the molecular dynamics (MD) simulations of compound 3b showed its great stability inside the binding pocket until around 40 ns. Finally, a very promising SAR was concluded to help to design more powerful SARS-CoV-2 Mpro inhibitors shortly.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins
10.
Sci Rep ; 12(1): 12920, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1960505

ABSTRACT

During the current coronavirus disease 2019 (COVID-19) pandemic, symptoms of depression are commonly documented among both symptomatic and asymptomatic quarantined COVID-19 patients. Despite that many of the FDA-approved drugs have been showed anti-SARS-CoV-2 activity in vitro and remarkable efficacy against COVID-19 in clinical trials, no pharmaceutical products have yet been declared to be fully effective for treating COVID-19. Antidepressants comprise five major drug classes for the treatment of depression, neuralgia, migraine prophylaxis, and eating disorders which are frequently reported symptoms in COVID-19 patients. Herein, the efficacy of eight frequently prescribed FDA-approved antidepressants on the inhibition of both SARS-CoV-2 and MERS-CoV was assessed. Additionally, the in vitro anti-SARS-CoV-2 and anti-MERS-CoV activities were evaluated. Furthermore, molecular docking studies have been performed for these drugs against the spike (S) and main protease (Mpro) pockets of both SARS-CoV-2 and MERS-CoV. Results showed that Amitriptyline, Imipramine, Paroxetine, and Sertraline had potential anti-viral activities. Our findings suggested that the aforementioned drugs deserve more in vitro and in vivo studies targeting COVID-19 especially for those patients suffering from depression.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning/methods , Humans , Molecular Docking Simulation , SARS-CoV-2
11.
Pathogens ; 11(8)2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1957410

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first detected in Egypt in February 2020. Data about the prevalence rates of the SARS-CoV-2 lineages are relatively scarce. To understand the genetic characteristics of SARS-CoV-2 in Egypt during several waves of the pandemic, we analyzed sequences of 1256 Egyptian SARS-CoV-2 full genomes from March 2020 to May 2021. From one wave to the next, dominant strains have been observed to be replaced by other dominant strains. We detected an emerging lineage of SARS-CoV-2 in Egypt that shares mutations with the variant of concern (VOC). The neutralizing capacity of sera collected from cases infected with C.36.3 against dominant strains detected in Egypt showed a higher cross reactivity of sera with C.36.3 compared to other strains. Using in silico tools, mutations in the spike of SARS-CoV-2 induced a difference in binding affinity to the viral receptor. The C.36 lineage is the most dominant SARS-CoV-2 lineage in Egypt, and the heterotrophic antigenicity of SARS-CoV-2 variants is asymmetric. These results highlight the value of genetic and antigenic analyses of circulating strains in regions where published sequences are limited.

12.
J Tradit Complement Med ; 12(1): 16-34, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1814842

ABSTRACT

BACKGROUND AND AIM: The discovery of drugs capable of inhibiting SARS-CoV-2 is a priority for human beings due to the severity of the global health pandemic caused by COVID-19. To this end, natural products can provide therapeutic alternatives that could be employed as an effective safe treatment for COVID-19. EXPERIMENTAL PROCEDURE: Twelve compounds were isolated from the aerial parts of C. officinalis L. and investigated for their inhibitory activities against SARS-CoV-2 Mpro compared to its co-crystallized N3 inhibitor using molecular docking studies. Furthermore, a 100 ns MD simulation was performed for the most active two promising compounds, Calendulaglycoside A (SAP5) and Osteosaponin-I (SAP8). RESULTS AND CONCLUSION: At first, molecular docking studies showed interesting binding scores as compared to the N3 inhibitor. Calendulaglycoside A (SAP5) achieved a superior binding than the co-crystallized inhibitor indicating promising affinity and intrinsic activity towards the Mpro of SARS-CoV-2 as well. Moreover, findings illustrated preferential stability for SAP5 within the Mpro pocket over that of N3 beyond the 40 ns MD simulation course. Structural preferentiality for triterpene-Mpro binding highlights the significant role of 17ß-glucosyl and carboxylic 3α-galactosyl I moieties through high electrostatic interactions across the MD simulation trajectories. Furthermore, this study clarified a promising SAR responsible for the antiviral activity against the SARS-CoV-2 Mpro and the design of new drug candidates targeting it as well. The above findings could be promising for fast examining the previously isolated triterpenes both pre-clinically and clinically for the treatment of COVID-19.

13.
RSC advances ; 11(47):29267-29286, 2021.
Article in English | EuropePMC | ID: covidwho-1812712

ABSTRACT

Six compounds namely, tanshinone IIA (1), carnosic acid (2), rosmarinic acid (3), salvianolic acid B (4), baicalein (5), and glycyrrhetinic acid (6) were screened for their anti-SARS-CoV-2 activities against both the spike (S) and main protease (Mpro) receptors using molecular docking studies. Molecular docking recommended the superior affinities of both salvianolic acid B (4) and glycyrrhetinic acid (6) as the common results from the previously published computational articles. On the other hand, their actual anti-SARS-CoV-2 activities were tested in vitro using plaque reduction assay to calculate their IC50 values after measuring their CC50 values using MTT assay on Vero E6 cells. Surprisingly, tanshinone IIA (1) was the most promising member with IC50 equals 4.08 ng μl−1. Also, both carnosic acid (2) and rosmarinic acid (3) showed promising IC50 values of 15.37 and 25.47 ng μl−1, respectively. However, salvianolic acid (4) showed a weak anti-SARS-CoV-2 activity with an IC50 value equals 58.29 ng μl−1. Furthermore, molecular dynamics simulations for 100 ns were performed for the most active compound from the computational point of view (salvianolic acid 4), besides, the most active one biologically (tanshinone IIA 1) on both the S and Mpro complexes of them (four different molecular dynamics processes) to confirm the docking results and give more insights regarding the stability of both compounds inside the SARS-CoV-2 mentioned receptors, respectively. Also, to understand the mechanism of action for the tested compounds towards SARS-CoV-2 inhibition it was necessary to examine the mode of action for the most two promising compounds, tanshinone IIA (1) and carnosic acid (2). Both compounds (1 and 2) showed very promising virucidal activity with a most prominent inhibitory effect on viral adsorption rather than its replication. This recommended the predicted activity of the two compounds against the S protein of SARS-CoV-2 rather than its Mpro protein. Our results could be very promising to rearrange the previously mentioned compounds based on their actual inhibitory activities towards SARS-CoV-2 and to search for the reasons behind the great differences between their in silico and in vitro results against SARS-CoV-2. Finally, we recommend further advanced preclinical and clinical studies especially for tanshinone IIA (1) to be rapidly applied in COVID-19 management either alone or in combination with carnosic acid (2), rosmarinic acid (3), and/or salvianolic acid (4). Tanshinone IIA shows the most promising anti-SARS-CoV-2 biological activity: molecular docking, molecular dynamics, in vitro, and SAR studies.

14.
RSC advances ; 11(17):10027-10042, 2021.
Article in English | EuropePMC | ID: covidwho-1787159

ABSTRACT

The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2. Conducting studies on repurposing some FDA-approved glucocorticoids can be a promising prospective for finding a treatment for COVID-19. In addition, the use of anti-inflammatory drugs, such as glucocorticoids, is a pivotal step in the treatment of critical cases of COVID-19, as they can provoke an inflammatory cytokine storm, damaging lungs. In this study, 22 FDA-approved glucocorticoids were identified through in silico (molecular docking) studies as the potential inhibitors of COVID-19's main protease. From tested compounds, ciclesonide 11, dexamethasone 2, betamethasone 1, hydrocortisone 4, fludrocortisone 3, and triamcinolone 8 are suggested as the most potent glucocorticoids active against COVID-19's main protease. Moreover, molecular dynamics simulations followed by the calculations of the binding free energy using MM-GBSA were carried out for the aforementioned promising candidate-screened glucocorticoids. In addition, quantum chemical calculations revealed two electron-rich sites on ciclesonide where binding interactions with the main protease and cleavage of the prodrug to the active metabolite take place. Our results have ramifications for conducting preclinical and clinical studies on promising glucocorticoids to hasten the development of effective therapeutics against COVID-19. Another advantage is that some glucocorticoids can be prioritized over others for the treatment of inflammation accompanying COVID-19. The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2.

15.
Drug design, development and therapy ; 16:685-715, 2022.
Article in English | EuropePMC | ID: covidwho-1749266

ABSTRACT

The rising outbreak of SARS-CoV-2 continues to unfold all over the world. The development of novel effective antiviral drugs to fight against SARS-CoV-2 is a time cost. As a result, some specific FDA-approved drugs have already been repurposed and authorized for COVID-19 treatment. The repurposed drugs used were either antiviral or non-antiviral drugs. Accordingly, the present review thoroughly focuses on the repurposing efficacy of these drugs including clinical trials experienced, the combination therapies used, the novel methods followed for treatment, and their future perspective. Therefore, drug repurposing was regarded as an effective avenue for COVID-19 treatment. Recently, molnupiravir is a prodrug antiviral medication that was approved in the United Kingdom in November 2021 for the treatment of COVID-19. On the other hand, PF-07321332 is an oral antiviral drug developed by Pfizer. For the treatment of COVID-19, the PF-07321332/ritonavir combination medication is used in Phase III studies and was marketed as Paxlovid. Herein, we represented the almost history of combating COVID-19 from repurposing to the recently available oral anti-SARS-CoV-2 candidates, as a new hope to end the current pandemic. Graphical

16.
AAPS PharmSciTech ; 23(1): 44, 2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1595653

ABSTRACT

Investigating bicelles as an oral drug delivery system and exploiting their structural benefits can pave the way to formulate hydrophobic drugs and potentiate their activity. Herein, the ability of non-ionic surfactants (labrasol®, tween 80, cremophore EL and pluronic F127) to form curcumin loaded bicelles with phosphatidylcholine, utilizing a simple method, was investigated. Molecular docking was used to understand the mechanism of bicelles formation. The % transmittance and TEM exhibited bicelles formation with labrasol® and tween 80, while cremophor EL and pluronic F127 tended to form mixed micelles. The surfactant-based nanostructures significantly improved curcumin dissolution (99.2 ± 2.6% within 10 min in case of tween 80-based bicelles) compared to liposomes and curcumin suspension in non-sink conditions. The prepared formulations improved curcumin ex vivo permeation over liposomes and drug suspension. Further, the therapeutic antiviral activity of the formulated curcumin against SARS-CoV-2 was potentiated over drug suspension. Although both Labrasol® and tween 80 bicelles could form bicelles and enhance the oral delivery of curcumin when compared to liposomes and drug suspension, the mixed micelles formulations depicted superiority than bicelles formulations. Our findings provide promising formulations that can be utilized for further preclinical and clinical studies of curcumin as an antiviral therapy for COVID-19 patients. Graphical Abstract.


Subject(s)
COVID-19 , Curcumin , Antiviral Agents , Feasibility Studies , Humans , Micelles , Molecular Docking Simulation , SARS-CoV-2 , Surface-Active Agents
17.
RSC Adv ; 11(50): 31339-31363, 2021 Sep 21.
Article in English | MEDLINE | ID: covidwho-1517647

ABSTRACT

Since its first report in December 2019, the novel coronavirus virus, SARS-CoV-2, has caused an unprecedented global health crisis and economic loss imposing a tremendous burden on the worldwide finance, healthcare system, and even daily life. Even with the introduction of different preventive vaccines, there is still a dire need for effective antiviral therapeutics. Nature has been considered as the historical trove of drug discovery and development, particularly in cases of worldwide crises. Herein, a comprehensive in silico investigation of a highly focused chemical library of 34 pederin-structurally related marine compounds, belonging to four polyketides families, was initiated against the SARS-CoV-2 main protease, Mpro, being the key replicating element of the virus and main target in many drugs development programs. Two of the most potent SARS-CoV-2 Mpro co-crystallized inhibitors, O6K and N3, were added to the tested database as reference standards. Through molecular docking simulation, promising compounds including Pederin (1), Dihydro-onnamide A (11), Onnamide C (14), Pseudo-onnamide A (17), and Theopederin G (29) have been identified from different families based on their superior ligand-protein energies and relevant binding profiles with the key Mpro pocket residues. Thermodynamic behaviors of the identified compounds were investigated through 200 ns all-atom molecular dynamics simulation illustrating their significant stability and pocket accommodation. Furthermore, structural activity preferentiality was identified for the pederin-based marine compounds highlighting the importance of the terminal guanidine and cyclic hemiacetal linker, and the length of the sidechain. Our findings highlight the challenges of targeting SARS-CoV-2 Mpro as well as recommending further in vitro and in vivo studies regarding the examined marine products either alone or in combination paving the way for promising lead molecules.

18.
RSC Adv ; 11(56): 35536-35558, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1510631

ABSTRACT

The global COVID-19 pandemic became more threatening especially after the introduction of the second and third waves with the current large expectations for a fourth one as well. This urged scientists to rapidly develop a new effective therapy to combat SARS-CoV-2. Based on the structures of ß-adrenergic blockers having the same hydroxyethylamine and hydroxyethylene moieties present in the HIV-1 protease inhibitors which were found previously to inhibit the replication of SARS-CoV, we suggested that they may decrease the SARS-CoV-2 entry into the host cell through their ability to decrease the activity of RAAS and ACE2 as well. Herein, molecular docking of twenty FDA-approved ß-blockers was performed targeting SARS-CoV-2 Mpro. Results showed promising inhibitory activities especially for Carvedilol (CAR) and Nebivolol (NEB) members. Moreover, these two drugs together with Bisoprolol (BIS) as an example from the lower active ones were subjected to molecular dynamics simulations at 100 ns. Great stability across the whole 100 ns timeframe was observed for the top docked ligands, CAR and NEB, over BIS. Conformational analysis of the examined drugs and hydrogen bond investigation with the pocket's crucial residues confirm the great affinity and confinement of CAR and NEB within the Mpro binding site. Moreover, the binding-free energy analysis and residue-wise contribution analysis highlight the nature of ligand-protein interaction and provide guidance for lead development and optimization. Furthermore, the examined three drugs were tested for their in vitro inhibitory activities towards SARS-CoV-2. It is worth mentioning that NEB achieved the most potential anti-SARS-CoV-2 activity with an IC50 value of 0.030 µg ml-1. Besides, CAR was found to have a promising inhibitory activity with an IC50 of 0.350 µg ml-1. Also, the IC50 value of BIS was found to be as low as 15.917 µg ml-1. Finally, the SARS-CoV-2 Mpro assay was performed to evaluate and confirm the inhibitory effects of the tested compounds (BIS, CAR, and NEB) towards the SARS-CoV-2 Mpro enzyme. The obtained results showed very promising SARS-CoV-2 Mpro inhibitory activities of BIS, CAR, and NEB (IC50 = 118.50, 204.60, and 60.20 µg ml-1, respectively) compared to lopinavir (IC50 = 73.68 µg ml-1) as a reference standard.

19.
Vaccines (Basel) ; 9(11)2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1512751

ABSTRACT

Respiratory viruses represent a major public health concern, as they are highly mutated, resulting in new strains emerging with high pathogenicity. Currently, the world is suffering from the newly evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus is the cause of coronavirus disease 2019 (COVID-19), a mild-to-severe respiratory tract infection with frequent ability to give rise to fatal pneumonia in humans. The overwhelming outbreak of SARS-CoV-2 continues to unfold all over the world, urging scientists to put an end to this global pandemic through biological and pharmaceutical interventions. Currently, there is no specific treatment option that is capable of COVID-19 pandemic eradication, so several repurposed drugs and newly conditionally approved vaccines are in use and heavily applied to control the COVID-19 pandemic. The emergence of new variants of the virus that partially or totally escape from the immune response elicited by the approved vaccines requires continuous monitoring of the emerging variants to update the content of the developed vaccines or modify them totally to match the new variants. Herein, we discuss the potential therapeutic and prophylactic interventions including repurposed drugs and the newly developed/approved vaccines, highlighting the impact of virus evolution on the immune evasion of the virus from currently licensed vaccines for COVID-19.

20.
Molecules ; 26(21)2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1488677

ABSTRACT

Flavonoids are important secondary plant metabolites that have been studied for a long time for their therapeutic potential in inflammatory diseases because of their cytokine-modulatory effects. Five flavonoid aglycones were isolated and identified from the hydrolyzed aqueous methanol extracts of Anastatica hierochuntica L., Citrus reticulata Blanco, and Kickxia aegyptiaca (L.) Nabelek. They were identified as taxifolin (1), pectolinarigenin (2), tangeretin (3), gardenin B (4), and hispidulin (5). These structures were elucidated based on chromatographic and spectral analysis. In this study, molecular docking studies were carried out for the isolated and identified compounds against SARS-CoV-2 main protease (Mpro) compared to the co-crystallized inhibitor of SARS-CoV-2 Mpro (α-ketoamide inhibitor (KI), IC50 = 66.72 µg/mL) as a reference standard. Moreover, in vitro screening against SARS-CoV-2 was evaluated. Compounds 2 and 3 showed the highest virus inhibition with IC50 12.4 and 2.5 µg/mL, respectively. Our findings recommend further advanced in vitro and in vivo studies of the examined isolated flavonoids, especially pectolinarigenin (2), tangeretin (3), and gardenin B (4), either alone or in combination with each other to identify a promising lead to target SARS-CoV-2 effectively. This is the first report of the activity of these compounds against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/drug effects , Flavones/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Brassicaceae/metabolism , Chlorocebus aethiops , Chromones/pharmacology , Coronavirus 3C Proteases/metabolism , Drug Discovery/methods , Flavones/metabolism , Flavonoids/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Quercetin/analogs & derivatives , Quercetin/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vero Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL